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20. (continued)

in the noise statistics is introduced within this framework by allowing
a general type of uncertainty in the univariate statistics of the
independent sequence that drives the moving average. To find robust
detectors for signals in this type of weakly dependent noise environment,
related results concerning robust location estimation in an analogous
dependent situation are applied to modify a robust detection system for
the corresponding independent-noise case., It is argued here that a
robust detector for this dependent noise mpdel is characterized by a
least-favorable noise distribution which co{ncides with the distribution
that is least favorable for the corresponding independent-noise case.
However, the resulting detector design for deépendent noise differs from
that for independent noise; in particular, the robust detector for de-
pendent noise is based on a linearly corrected\version of the influence
curve that defines the independent-noise robust\detector. The worst-
case performance of the proposed robust detector\relative to that of

the independent-noise robust detector is also analyzed, with the
conclusion that the performance of the proposed téchnique 1is better,

to first order in the averaging weights, in this régpect. A modification
of this robust detector is also proposed which eliminates some practical
disadvantages of this system while retaining equivalent performance to
first order. The specific situation of contaminated Gaussian noise

is treated in order to illustrate the analysis.
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This report is a preprint of a paper with the same title which is
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scheduled to appear in the September 1982, issue of the IEEE Trans-

actions on Information Theory (vol. IT-28). This is the second part of
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/ a two-part study, the first part of which is published as CSL Report No.
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I. Introduction and Preliminaries
As in Part I of this study [l], we consider the signal detection
problem described by the following pair of statistical hypotheses concerning
a random process [xi; i1i=1,2,...,0} from which we have a sequence
[xi; i=1,2,...,n} of observations:
Ho: Xi-Ni ;3 1=1,2,...,n
versus

111: xi = N1 +0 ;1i=1,2,...,n (1)

wvhere [Ni.; i =1,2,...,m} 1s a stationary noise process and 6 is a known
positive signal. Part 1 of this study [1] considered the problem of
designing asymptotically efficient detection systems for the problem of (1)

in which the noise process exhibits a weak moving-average type of dependence.

! Specifically, [1] considered the noise model
E-;;. Ny =p Y, +Y, +p Yy 3 1=12,... (2)
' where (Y:I.; i1 € 2} is an independent and identically distributed (1.i.d.)

noise-generating sequence with marginal probability density function (p.d.f.)p,
525 and where p is a fixed parameter indexing the degree of dependence among the

= noise samples. It was shown in [1] that an appropriate detector for this

situation with |p| small is of the form of the corresponding optimum

i';' independent-noise (p = 0) system with an added linear correction factor

R depending on the degree of dependence as parameterized by p and on the
particular noise statistics as determined by p. It was also seen in [1]
g @ that appreciable improvement over the corresponding independent-noise system

can often be expected from the proposed system, particularly for channels

dominated by impulsive noise.
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The specification of the detection system proposed in [l] requires a
complete knowledge of the statistics of the noise process [Ni.; 1=1,2,...,=}
L as determined by p and p. An important practical modification of this

problem is the situation in which the noise distribution is not known

2
»

I

exactly but rather is known to be in some class of possible noise

rd

distributions representing uncertainty in a nominal noise model. In this
< situation a detector is desired whose performance does not deteriorate
j::: drastically over the class of possible noise statistics. A detection system
‘ with this general property is usually known as a robust detector. Several
n investigators have considered the problem of robust detection in the model
of (1) for the case in which the noise sequence is independent. General
- results for robust hypothesis testing in a model which includes the
. independent-noise case of (1) have been obtained by Huber {2] and by Huber
) and Strassen [3] within a minimax risk (or error probability) formulation
and by the author {4] within a maximin distance formulation. Martin and
- Schwartz [5] have considered robust detection in the model of (1) for the
o case in which the independent noise process is a mixture-contaminated
Gaussian process. Within this context both minimax risk and maximin local
power alopel are treated in [5]. Kassam and Thomas [8] have extended the
results of (5] to solve the maximin-power-slope formulation for the case of
~3 mixture-contaminated nonGaussian noise processes, and, in an asymptotic
= formulation, El-Sawy and VandeLinde [9] have treated the minimax risk
o problem for (1) with general uncertainty classes for the marginal distribu-
tion of the independent noise sequence. A sequential version of (1) is

E treated in & similar context by El-Sawy and VandelLinde in {10].

1'lm:all that the local power slope is the criterion for designing locally
E most powerful detection systems (see Capon (6] or Ferguson {7]).
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Considerably less work has been done on the problem of robust detection
for the situation of (1) with dependent noise, although the related problem
of nonparametric (or distribution-free) detection in (1) with dependent
noise has been considered in some detail (see, for example, Kanefsky and
Thomas (11], Gastwirth, et al. [12], Davisson, et al. [13], Kassam and Thomas
(14}, and Sirvanci and Wolff [15]), as has the statistically analogous problem
of robust estimation of location with dependent errors (see Hoyland {16],
Gastwirth and Rubin [17], Portnoy [18,19], and Koul [20]). In this paper we
consider robust detection in (1) for situations in which the noilse can be
modeled by a weakly dependent moving-average process as described by (2)
with small |p|. Since the parameter p can be estimated straightforwardly from
an observation of {X,; 1=-1,2,...,-} (see Eq. (53) of [1]) we model statistica}_
uncertainty in the noise sequence {N,; i = 1,2,...,8} by assuming that the
p.d.f. p of the noise-generating sequence {Yi; 1 € Z} 1s not known exactly
but, rather, is known only to be a member of & class § of symmetric probability
densities. Note that, for analytical reasons, the criterion of asymptotic
detection efficiency (which was applied in [1] for optimum design) is not

suitable for robust design in this situation (see, for example, Martin and

deMontricher {21]). Thus, we adopt a Neyman-Pearson design philosophy and,
for a particular detector 9, consider the probabilities of false alarm and

detection, P, and P, respectively, given for p € § by

F D
P (?|p) = P{v chooses H,|H) is true and Y, ~p V 1 € Z] €))
and
B (@|p) = P{p chooses H,|H, is true and Y, ~p Y1 €1Z]. )
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et Adopting the game-theoretic philosophy of robust design (as proposed by

Huber [2]) we may define an g-level robust detector for this situation as

]

one which solves the game

ap A Ar TR PLEIR R RR
P Y
» %! *

: E max { inf PD(le)} subject to sup PF(Cp|p) Sa ()
' °P_€..D PEF PEF -
’ ﬂ where 5 is an appropriate class of detectors. Note that (5) reduces to the
- e traditional Neyman-Pearson design criterion if ¥ consists of a single p.d.f. [7].
K In this paper we seek the solution to (5) fér the small-|p| situation in
'{ (1) and (2) by restricting B to be the class of M-detectors as proposed by
_‘ El-Sawy and VandeLinde in [9]. In so doing we are able to exploit related
@ results obtained by Portnoy [18,19] for the problem of robust estimation of
[ a location parameter with dependent observation errors modeled by (2) with
v small |p|. The class of detectors to be considered here is ciefingd
i specifically in Section II and first-order (in p) approximations to their
N asymptotic false-alarm and detection probabilities are developed. The structure
’ of M-detectors that are optimum with respect to these approximations is also
F presented in Section II, and it is seen that the system modification to
. account for weak noise dependency in M-detectors is similar to that found
;_: for the detectors considered in [1]). The first-order approximations to the
!_: error probabilities developed in Section II suggest a first-order approxima-
tion to the minimax problem of (5), and Section III considers the solution to
e this first-order version of (5). In particular, it is argued that a smll-!p]
“ robust design for this problem is the smll-lpl optimum design corresponding
E‘:, to & least-favorable noise-generating p.d.f. Moreover, it is seen (as in

the analogous situation of [18]) that this least-favorable noise-generating

¥ SV

p.d.£. does not depend on the value of p and thus is the same as the p.d.f.
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2 that 1s least favorable for the independent noise case. This latter result
is useful because the corresponding independent-noise problem has been solved
E = previously for a number of noise uncertainty models (see, for example,
'E :_\ [5,8,9]). 1In SCCtiO'll IV, we consider a modification of the system developed
in Section III because of qualitative disadvantages of the system of
Section III. It is demonstrated analytically in Section IV that this
modification is equivalent, to first order in p, to the detector developed
in Section III, a fact which supports the use of the modification intuitively
E since the modified system is superior to the unmodified onme. Also in
E 2 Section IV, the specific example of a contaminated Gaussian noise model
B (as proposed by Huber [22]) is considered in some detail in order to illustrate
-the proposed robust design procedure. In Section V we return to the general
T situation to consider the degree to which the worst-case performance of the
! proposed robust detector outperforms the corresponding independent-noise
s (p = 0) robust detector. In particular, it is shown that this performance
i difference is of first order in p, a fact which indicates that the
E consideration of dependence is even more important in the robust design
: !_\. problem than in the corresponding optimum design problem of [l]. (The
l’ corresponding performance difference in (1] is of second order in p.)
o~ Finally, Section VI includes some further discussion of the results of this
i _ paper and of some possible extensions of these results.
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I1. M-Detectors and Iheir Performance in Weakly Dependent Noise
El-Sawy and VandeLinde [9] have solved the problem of (5) for the

asymptotic (n - w) case with independent noise (p = 0) when the class 5

is restricted to contain only detectors of a specific structure known as
M-detectors. This class of detectors is based on a class of location
estimates known as M-estimates introduced by Huber in [22], and certain
members of this class derive their robustness properties from analogous
properties for robust estimation. Robust M-estimates of location for the
weak dependence model of (2) with small |p| have been considered by Portnoy
in [18] and [19], and thus it is reasonable to consider the related class of
M-detectors to seek a solution to the analogous problem of (5) with ‘p| small
but nonzero.

We therefore restrict S to contain only detectors of the following form

1; 1f§*(_x_)>‘r
cp'(§)' Y 156*(5)-7 (6)
0;

if 6'@) <T

where § v (x) is a solution to the equation

n
z oyx, -1 =0 )
g=1 1 qe§ @

with 4y an arbitrary function, known as the influence curve of 6* (see also

Hampel [23] and Huber [24]) characterizing the detector 9 . Here q)t (x)

]
denotes the probability with which we accept Hl given that x is observed,
and the threshold Y and randomization T are chosen to yield desired

false-alarm performance. A detector of the form (6) is known as an

............
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(x) of (7) is an M-estimate

M-detector {9] and the de*~ction statistic 6

]
[22]. Note that the M-estimate is a generalization of the independent-

noise maximum-likelihood estimate of location of X which corresponds to

the particular choice of influence curve y(x) = d log[p(x)]/dx (see, for
example, Silvey [25]). Moreover, in the independent case, the M-detector
corresponding to the maximum-likelihood M-estimate is asymptotically
equivalent to the likelihood ratio test of Ho versus Hl (see, for example,
Lemma 3 of [9]). Thus, the restriction to detectors of the form of (6) is
reasonable_for the sm11-|p| and large-n case in that it does not eliminate
the optimum detector for any member 0of ¥ from consideration when p = 0. Note
further that the class of M-estimates includes the sample mean (given by
¥(x) = x), for which the corresponding M-detector is the linear detector,
as well as the sample median (given by §(x) = sgn(x)).

Note that, for many choices of the influence curve y, (7) will sometimes
have multiple solutions; however, for amalytical (and implementational)
purposes, we would like to specify a particular solution to (7). Thus, if
for a given x there are multiple solutions to (7) we will choose 6 ' (x) to be
the solution closest to the sample mean x 4 %n 131::1, and, 1f there are two
solutions equidistant from x, we choose 8 ' (x) to be the larger of the two.
Also, 1if (7) has no solution for a particular x we take 6' (x) = 0. With this
construction of 6* (x) we may state the following result which follows from
Theorem A.2 of Portnoy [18].

Theorem 1l: Assume the model of (1) and (2). Suppose 02 4 Var(Yl) <o, ¥ is
continuous and bounded, Efy (Ni+e)] is strictly increasing in a neighborhood

of =0, and E{y (Ni.)] = 0. Then 60 (X) converges in probability to 6 under H]_

and to 0 under Ho as n —~ o,
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Proof: For the model of (1) and (2) with a2 < @ it follows from the

Chebychev inequality and from Lemma 3 of Billingsley [26 , p. 172] that
n

;1‘- Z xi converges in probability to 6 under Hl and in probability to O
i=]1

under Hy as n ~ ». This and the fact that {Ni.; 1 =1,2,...,=} is
2-dependent (i.e., N:l.
via Theorem A.2 of [18].2

and N.1 are independent if |i-j| > 2) imply Theorem 1
Thus, under the mild conditions of Theorem 1, we see that the M-detector

CP* of (6) provides a consistent test of Iio versus l-ll provided that the

threshold T i8 between O and 6. That is, q;* with * € (0,0) has the property

that false-alarm and detection probabilities.PD and PF’ converge to 0 and 1,

respectively, as the number of samples n approaches =, Consistency is, of

course, the very least that we should require of a detection procedure;

thus in order to optimize over the class 8, it {s of further interest to

approximate the large-n performance of the detectors of this form for the

weak dependence model of (2). For this purpose we may state the following

result which follows straightforwardly from Theorems 2.1 and A.4 of [18].

Theorem 2: Assume the hypothesis of Theorem 1. Suppose in addition that

¢ is differentiable except as a closed set D of Lebesgue measure O,

that ' 1s uniformly continuous off of D, that 0 ¢ D, that E[#'(N,_)}

and E{y’ (Yi)} are positive, and that the characteristic function Py of Yi

satisfies f u2|¢Y(u)|du < ®. Then, with X, = N, + for 1=1,2,...,®, the

quantity n-k(é' ' (X) =8) converges in distribution to a Gaussian random

variable with mean zero and variance cz(t,p;p) given by3

2Not:e that the sample mean can be replaced by any other consiitent estimate of

® in this analysis (see [18]), in which case the condition 0“ < = might be

relaxed in Theorem 1.

3 2 2., 2

As in [1], by 0(p°) we mean limolo(p 1| <=,
p -
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o2 (y,pip) = V(y,pip) + 0(p2) (8)

where

siepl | ripap)

V(y,Pip) =
El @b Bl )

¢
with expectations cowputed under the assumption that Y1 ~Pp.

Discussion: The validity of Theorem 2 relies on two basic results: a
central limit theorem (Theorem A.4 of [18]) yielding the asymptotic
normality of 6 *Ql.) and an approximation theorem (Theorem 2.1 of [18])
ylelding (8). The proof of the central-limit part of this theorem relies in
part on a Berry-Esseen type theorem for m-dependent random variables due to

Stein (27, Corollary 3.1] which gives an error bound of O(n-k) for the

normal approximation to the distribution of n-l“(s*(_) -9). Thus, under
the conditions of Theorem 2, we may write the false-alarm and detectioﬁ

probabilities of y as

Pp(e, [P) = 1-3(a¥1/ [V(h,p30) +06 1% + 0™ (10)
and

By(@, [P) = 1-3(a%(r - 0)/1V(y,pip) 0 1H +0@™Y), an

respectively, where § is the standard normal distribution function

1 X -2
3x) === [ e dt. 12)
J2n

1T =0

In view of (10) and (11) we adopt, for analytical purposes, the following

large-sample weak-dependence approximations to PF and PD »
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.. 3p) = L=g(ar/ [V(y,pip)1® 13)
F ‘P'oP) ~§(n°r ¥sPip ) (
and
By, 5p) = L-3air - )/(Vey.2io)1) (14)

Note that, for a fixed noise-generating density p € § and threshold
T € (0,8), the error probabilities of (13) and (14) can be optimized
simultaneously by minimizing the functional V(y,p;p) over an appropriate class
of influence curves. Note also that, for fixed p, we have
V(r,pip) = [eCysp)]™t (15)
where e(y;p) 1is the first-order approximation developed in Part I of this
study (see Lemma 1 of [1]) for the efficacy or differential signal-to-noise

ratio of a detector for (1) and (2) based on comparing the detection statistic

i=1
to a threshold. Thus, the criterion of maximum e(y;p) which was developed
in Part I in the context of efficient détection for (1) and (2) with the
structure of (16) is equally valid for approximately optimum detection
in the situation with the structure of (7). In particular, by applying
Theorem 1 of [1] we have that, within mild regularity on p, the problem

u*n V(y,Pip) is solved for fixed p by the influence curve

y(x) = -p'(x)/p(x) = 201(p)x/(1+2p) an

where p' denotes the derivative of p and where I(p) is Fisher's information

number for location of p defined by

1) = [ (6 )2 /px)lax . (18)

. |
T 4% (16)
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hypotheses of Theorems 1 and 2 above since this function is not bounded.
o However, as is shown in Section IV below, the function of (17) can be
,E' \ approximated by a bounded influence curve that yields essentially the
[N
same performance for small |p|. This issue is discussed further in
)
N Section IV. <
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III. Robust Detection in Weakly Dependent Noise
The analysis of the above section indicates that the quantities of

(13) and (14) can be used to approximate the probabilities of false alarm
and detection, respectively, of M~detectors operating in the presence of the
noise process of (2) with small |p| Thus, in order to design M-detectors
that are robust in the presence of weak dependence, we may consider the
maximin formulation defined by (5) as applied to the error-probability
approximations of (13) and (14).

To seek solutions to this problem we first consider the alternate

minimax problem

min max V(.Q »Pip) (19) .

VEYPETF

where the functional V is from (9) and where ¥ is an appropriate class of
influence curves. We note that a saddle-point solution to (19) will be a
pair ('R’pk) €Y xF satisfying

max V(y.,P;p) = V(¥osPpip) = min V(y,Pyip), (20)

pPESF R R’*R v EY R
and the existence of such a pair is equivalent to the validity of the
minimax property (see, for example, Barbu and Precupanu [28])

min max V(y,p;p) = max min V(y,pP5p) - 21)
vVEY PETF PEF €Y

Note that, 1if (tR.pR) €Y x¥ satisfies (20), then it follows from (13)

and (14) that for any threshold r € (0,0) we have




.................................

'R;p) - Pl,.(cp'R;PR) (22)

o min max B (p,:p) = B (p, sPy)
ve€y pes 0¥ . S

= min B (p. ;p) - (23)
pes? ¥

For a particular choice o of false-alarm probability, the threshold TR given by

" Tp = 8721V (rgpgi) 1% 071(1 - ) (24)

il' will yield a value of fr(q;' sPg) = @ . Thus, in view of (22) and (23), 1f 7,
R

;“ of (24) is between 0 and 6 then the pair ('R’pll) is a saddle-point solution

to (5) with PD and PF replaced by §D and PF’ respectively. Note that the

. condition ‘I‘R > 0 is satisfied 1if o < 4, which is the only range of interest

o for a. However, the condition TR

(o strength @, relative to @ and n, for which minimaxity can be achieved with

< @ places a lower bound on the signal

~ ~n
F PD and PF' Further discussion of this point is included in Section VI

below.

It is noteworthy that a pair solving (20) satisfies (via (10) and (11))

: . 2 %
Bp(9y 3B) S Bp(®y img) +0(°) + 0(a™) (25)

"3 ) . 2 |
- By @y, iP) * Bp(®y ibp) +0(7) +0(™) (26)

};-; for every p € ¥. However, corresponding O(pz) and O(n's) statements
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l' concerning sup PPQQ' ;p) and inf RDGQ. ;p) cannot be made unless the
. pE’F R pEF R
£ 0(92) and O(nd‘) terms in (8), (10), and (11) are uniform on ¥. Nevertheless,
G
" because of (25) and (26), a density satisfying (20) can be considered a
?E least-favorable member of ¥ for the detection problem of interest.

In view of the above comments, we see that a solution 'R to (19)

[$Y
ié ylelds an M-detector with desirable weak-dependence large-sample robustness
i in performance over the class ¥. The problem of (19) has been studied
t‘“

in [18] in the context of robust M-estimation of location. Note that, if
%; (QR,pR) satisfies (20) and if Pp and the members of Y satisfy the
- hypothesis of Theorem 1 of [1], then Theorem 1 of [1] indicates that *R
R must be given (up to a scale factor) by
i ¥ (x) = 4p(x) -Kex ; x€R @7
5% where '0 - -pﬁ/pn and KR = sz(pn)/(l-PZp), provided this function (27) 1s a
W

member of Y. (Recall that I(p) denotes Fisher's information number given
!! by (18).) Using Eq. (36) of [1] we have (see also Eq. (3.8) of [18]) for
E: fixed p € ¥
‘ 1, .2

wdn V(¥,pip) = (L+4p)(I(p)] "+0(p")

= v
¥
- = (1+4p)utn V(1,p;0) +0(%) . (28)
- Thus, provided Y contains the appropriate influence curves, we may argue

(as in [18]) that to O(pz) the density p, solving max min V(y,p;P)
R pEF y €Y
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does not depend on the value of p. Theorem 1.1 of [18] gives a more precise
! reinforcement of this argument. Noting from (28) that
£, 1
E_si' n%n v(¥;p;0) = [I(P)] ", (29)
-

a saddle point solution to (19) thus can be sought by first choosing

[
f

PR € F to solve

Iy
& min I(p) (30)
pEF

&S:; and then choosing *R from (27). Note that the resulting robust influence

i curve is a linearly corrected version of the influence cruve for robust
M=detection in independent noise (i.e., to) as derived in [9]. This solution

:‘: is thus completely analogous to the corresponding result for optimum

detection with known p derived in [1].

i The existence and uniqueness of solutions to (30) and their

s relationship to solutions to (19) with p = 0 have been studied in detail by

o Huber in [22]. In particular, it follows from Theorem 2 of [22] that if ¥

! is convex and I(p) < » for all p € ¥, then a density Pg solving (30) and

its p = 0 optimum influence curve ¢° - -pl'&/pR is a saddle point solution

E:; to (19) with p = 0 1if '0 € Y. Furthermore, Theorem 4 of [22] implies that,

(= 1f ¥ 1is also vaguely compact, then there is a unique member of ¥ solving

& (30). Explicit solutions to (30) for several density classes of interest

}' and other aspects of the problem of (30) are found in Huber ([22] and [29])

’d and in Sullivan, et al. [30].
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IV. A Modification of the Maximin Solution

As noted above, the analysis of Section IV indicates that a robust
M-detector for |p| # O has an influence curve that is a linearly corrected
version of the influence curve of the p = 0 robust M-detector as studied by
El-Sawy and VandeLinde in [9]. This structure is undesirable for two reasons.
First, as noted in Section II, an influence curve with a linear component is
not bounded and thus does not satisfy the conditions needed for the validity
of Theorems 1 and 2. This is only an analytical disadvantage which can be
surmounted without too much difficulty. However, a more important objection
to this detector is that the unboundedness of the influence curve violates
basic intuitive principles of how robustness is achieved in a detector.
In particular, most robust detectors provide a means for limiting the effects .
of extraordinarily large observations (qutliers) which, L€ not accounted for,
tend to destroy detection performance (see, for example [5]). This objection
was also raised in [18] where, for the particular case in which ¥ represents
contaminated Gaussian noise, a truncated or lightly limited version of 'R is
shown to produce an M-estimate which differs in worst-case performance from §'
by only O(pz). In this section we consider & similar modification of the N
robust M=detector developed in Section III in a slightly more general context.

Since the robust influence curve 'R of (27) is objectionable because of
its unboundedness, it is reasonable (as suggested in [18]) to introduce
light limiting into this structure to produce a bounded approximation to 'R'
It is usually the case that the independent-noise robust influence curve to

is bounded (see [9] and [22]); so it is usually the linear correction term,

-Knx, that produces the unboundedness of 'R' Thus a reasonable modification
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¥ of 'R is to replace the temm xnx with a lightly limited version KRI (x)
' X where L(x) is a light limiter defined by
p
S x ; if x| sL
4]
. F 2(x) = (31)
.;‘ W Lsgn(x) ; 1f |x| > L
N with L a positive constant. Note that Chebychev's inequality implies that
A 7 the probability that an individual observation exceeds the limiting point L
::f is bounded by an upper bound proportional to L‘z. Thus, by choosing L
s r- sufficiently large, we should be able to make the effects of replacing x
. - by £4(x) in 'R negligible. In particular, if we choose L to be 0(9-1), then
1 o the effects of this replacement should be O(pz). With this motivation, we
, h thus propose replacing 'R of (27) with the modified influence curve tn
defined by
3
R ¥y (x) i1t x| S 1

! Vu(x) = (32)

-1 . >
¥o(x) - Kgk “sgn(x) ; if | x| Uk,

‘ = where kp = O0(p) and, as before, '0 - -pi/pR. For this structure we then
Lo have the following result.
f 3 Theorem 3: Suppose ¥ is such that (30) has a solution PR with 'O = -pl"/pR
i satisfying the conditions of Theorems 1 and 2. Then, for each p € ¥ such
A that E{Yi] < », ye have
u“_' 2

: V(hoPiP) = V(be,pip) +06°) . (33)
) ;..-;
R
TNl N N A Ty e N TN N I Sy

&
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Furthermore, if E[Yi] < B <® for all p € ¥, then
pszp’ V(4ysPiP) = puesp, V(gspip) + 06 . (34)
provided either p 2 0 or p < 0 and |p| 1s sufficlently small.

A proof of Theorem 3 1is included in the appendix. As suggested above,
this proof relies upon (among other things) Chebychev-type bounds on
probabilities that the magnitudes of the observations exceed k;]'. We see
that, under the conditions of this theorem, the truncated version of 'R
yields a detector whose worst-case performance is essentially equivalent
to that of Q*R. Note that if the conditions of Theorem 3 are not satisfied
(.e., 1f there 1s a p € ¥ such that E{Y>] = @) then the M-detector based
on .R will have very poof worst-case performance relative to that of Q'M.

Thus we may conclude generally that @

" is preferable to ® from both
M

practical and analytical viewpoints. 'R

To {llustrate the design of a robust M-detector and its modification as
suggested by (32), we consider a specific example treated previodsly in
various contexts of robust design by Huber [22], Martin and Schwartz [5],
and Portnoy [18]. 1In particular, we consider the class ’0 of contaminated

Gaussian densities defined by
$o={plp=(Q-6)f +ch; h€EX] (35)

where Z(x) = (Zﬂ)'l‘exp[-xz/Z} is the standard Gaussian density, ¢ is a fixed
number between O and 1, and X is a wide class of symmetric pdf's. Note that
30 thus defined can be considered to be an uncertainty neighborhood of a

nominal Gaussian model with a degree € of uncertainty in this model. The

P ] "\ . ;4"‘"","‘.“ y -r.-_': ’-. ..
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1
‘ E’ density minimizing Fisher's information I(p) over So is given by Huber in
E ! (22] and has the well-known form
3 1 - ) (x) ; |x| sk
) 3
S pp(x) = (36)
‘ (1 - o)z expl-k| |x] - x|} ; |x| >«
- where k is the unique positive solution to the equation
>IN
e -1
28(k) -1 + 28(k)/k = (1-¢) . a7

| e

o The p = 0 robust influence curve is thus given by

N

x ; x|l s x
i - ksgn(x) ; |x| >k
. ‘ and the |p| # 0 robust influence curve is (from (27))
i :
a-gx i lelsw
) ! 'R(x) = 39)
Lo k sga(x) - Kpx x| >x ,
Y
: ;:'_: wvhich, for the case p > 0, increases linearly in [-k,k] and decreases
f - linearly in [-k,k]c . Note that the value of I(pR) is given for this

.

case by

Putr e

b

I(pp) = (1-€)(28(k)~1) , (40)

which, of course, must decrease monotonically with ¢. Using (37) and (40)

it G e v W PR
o ATV o
e X

(# 1 i

the values of the parameters k and KR (recall that KR = ZpI(pR)/(1+Zp))

can be computed for given ¢ and p., For example the case ¢ = 0.1 and p = 0.1

q
i
o
2 ’
k¢
¢
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Sak as

yields k = 1.14 and YI = ,115. A reasonable bounded modification for the

influence curve of (39) with p > 0 is that suggested in [18], namely

o
..

N (1-Kp)x 3 x| sk
-
R .
" h® = k sgn(x) - Kpx ; k< |x| < k; (41)
- 0 ; x| > Kl
Ny P
e vhere kp = KR/k vhich is O(p) since K is 0(p). Figure 1 1llustrates this
e function for the case ¢ = 0.1 and p = 0.1. Further discussion of this and
) related examples is included in Sections V and VI below.
ﬁ
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V. Performance of the Proposed Robust System Relative to the

Independent-Noise Robust System

In Section III we argued that the least-favorable noise-generating density
PR is independent of the value of the dependence parameter p. Thus, for
eich value of p, the robust influence curve 'R is the optimum influence
curve (i.e., the solution to n%n v(v,pn;p)) corresponding to the fixed density
Pg- It follows from the analysis in Part I of this study (in particular, from
Theorem 2 of [1]) that, within regularity conditions, the quantities V(tR,pR;p)
and V(to,pn;p) differ only by O(pz) terms where, as before, '0 = -pl'{/pR.
Since Yo is the influence curve one would use for robustness if there were no
dependence, a question arises as to whether the worst-case performnce" of

ep' over ¥ might be only O(pz) different from that of @ That this is not

0 %
generally the case is shown in this section; in particular, we demonstrate that
this difference in worst-case performance is actually O(p) for most uncertainty
models of interest.

To consider the worst-case performance of GP' relative to the worst-case
R

performance of cp' for fixed p we first give the following result.

0
e Lemma 1: Suppose p, € ¥ solves (30) with 0 < I(pg) < =. Suppose further that
!‘ there are numbers b and B such that 0 < b S E[ti(‘ll)} SB<w,

E{Y}} S B, and b S E{y}} S B, for all p € ¥ where yo = -p}/p,. Then, if

pSOor if p > 0 and 1is sufficiently small, we have

i V(¥qsPiP) P ’

L - B o 2o g g

41: should be noted here that V('O,pR;O) is the worst-case value of V(Qo,p;O)

over p € ¥, but it is not necessarily true that V(Qo,pR;p) is the worst-case
b value of V(¢,,p;p) over § for p # 0. In fact, this latter situation is not
. usually the case, as foilows from Lemma 1 and Theorem 4.

L et e e A A

P P NI ’l‘..l
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cC.= 0 - > (43)
P B['oal)]v('otpso)
and where O(pz) is uniform over ¥.
B The proof of Lemma 1 is straightforward and will be omitted.
- This result shows that, although "“n"’n”) and V(to,pR;p) differ by only

2
0(p°) terms, V(QR.p;p) and V(Qo,p;p) may possibly differ by O(p) terms if p;‘pR.
(Note: it follows straightforwardly from (9) that V(vo,pR;-k) = 0,) It

follows from Lemma 1 that, for fixed p, we have

P O amh e Sa s g
JN -
R '

sup V(1o.P3p) = sup V(sg,pip) +Clo| +006%)  (44)
PEF PEF

wvhere C= supC_ ifp > O0OandC = | inf C | if p < 0. Ve note, in particular,
pesP peFP?

that (44) can not hold for any C < 0 since we must have ]

- V(¥gsPiP) = V(¥:Ppip) = V(¥gsPpip) + (%)
P

= sup V(¥p,pip) + 0@ (45)
PET

where the first equality in (45) follows from Theorem 2 of [1l]. Since (45)
is valid for both positive and negative p, (45) and (42) imply that either
V(to,p;-lz) takes on both negative and positive values over ¥ or V(to,p;-!;)
is identically zero on ¥. Thus, for every p there is a C 2 0 such that
(44) holds, and C = 0 1£f, and only 1if, V(vo,p;-k) = 0 for all p € ¥. Ve
note again that C depends only on the algebraic sign of p. Some conditions
under which C # 0 are summarized in the following result.
Theorem 4: Suppose ¥ is such that the following three conditions hold:

(1) There is a set 0 C IR and a constant K> 0 such that x € Q

implies vo(x‘, = K sgn(x).
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(i1) There exist pdf's Py and Py in ¥ such that Py =P " Py
¢ - ] g

onq and [ |y|p )y < [ |yleg(n)dy <[ |ylpy(y)dy.
- - b _J

(111) 0 < I(pg) <= and y'nm $o(7)P'(y) =0 for p=p,, P=p;, and p=p,.
-=
Then V(Qo,pl;-k) > 0 and V('o,pz;-k) < 0, and hence the constant C of (44)
is positive.
Proof: See the appendix.
Thus we see that, under the conditions of Lemma 1 and Theorem &4, the

improvement in worst-case performance by using YR rather than Yo is of
first order in |p|. Theorem 3 implies that i of (32) also ylelds this N(p)
improvement. Note that the condi.t.ions of Theorem 4 are satisfied by most
of the usual models for distributional uncertainty. For example, the
contanim;ed-causaian class treated in Section IV satisfies Conditions (1)
through (iii) as is easily seen from (35), (36), (38), and (40). Other classes
that satisfy these conditions include contaminated-mixture classes with
nominal models other than Gaussian (see Huber [22] and Kassam and Thomas [8]),
p-point classes as considered by El-Sawy and VandeLinde [9,10}], and the
class of densities whose cumulative probability distribution functions differ
in sup-norm from the standard Gaussian by no more than some prescribed amount
(see [22]). Thus, we may conclude that " is generally preferable to LI
to the extent that O(p) terms are appreciable (i.e., to the extent that the

model of (2) is of intereast).
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VI. Summary and Discussion

In this paper we have considered the problem of designing robust systems
for the detection of signals in weskly dependent noise. To f£ind solutions
to this problem we have considered the class of M-detectors that was proposed
by El-Sawy and Vandelinde in {9] for robustness in the corresponding
independent-noise case. For this class of detectors it was seen that the
robust estimation analysis of Portnoy [18] is applicable to the design of
robust structures for the weakly dependent moving-average model of noise
dependence. In particular, it was seen that an o-level robust M-detector q,‘k
for a class ¥ of noise-generating p.d.f.'s can be sought by choosing Pg to
minimize Fisher's information I(p) over ¥ and then taking LY from (27). '1"he
detection :h;.'eshold TR is chosen by (24) and must lie between O and & for
approximate minimaxity. Since 'R is usually not bounded it is intuitively
more reasonable to modify R by truncating the linear term at points + k']'
where kp is O(p) as in (32). The resulting M-detector q)'u is equivalent to
q"k to O(p ) under the conditions of Theorem 3. The worst-case performance
of both of these detectors is better by O(p) than that of the p = 0 robust
M-detector cp'o under the conditions of Lemma 1 and Theorem 4. As is the case
with results of Part I of this study [l], the results of this paper can also
be extended straightforwardly to moving averages of higher order than (2)
by applying the results of Portnoy [19] for M-estimation in such models.
However, the basic structure and performance of the robust M-detector are
unchanged by this generalization.

In general, to implement the robust detector one must first compute

?
Yz

9 (x) from (7) and then compare this value to a threshold. However, note
R

----------------
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n
that, if téx) is a strictly increasing function of x, then I 'n(xi «T) is a
i=1

strictly decreasing function of T; and, in this case, ¢' can be implemented
R
as follows (see (9]):

/ n
if T ¢y, (x,-T )<0O
1_1R1 T

1

n
%, © -4 Y i Af D oag(x-T) =0 46)

n
- >
\ 1f 151 g%y =T,) >0

o
we

where 1:1_ and y are chosen to give desired false-alarm performance. The
structure of (46) is simpler to implement than is (6) since it is not necessary
to solve (7) to perform the test of (46). However, it is not always the

case that *R is increasing, although it will be increasing if
dvo(x)/dx > Ky for all x € R . 7

1f Py is strongly unimodal (i.e., -log(pR) is convex) then (47) holds for all
p < 0; however, for p > 0, (47) does not hold for many practical cases
even when Py is strongly unimodal because of the redescending nature of 'R
(such as in the contaminated-Gaussian example of Section IV). If ¥R is not
strictly increasing, then (46) cannot be used and (7) must be solved;
howvever, efficient iterative techniques for solving (7) have been developed
(see, for example, Collins [31}]).

The robustness of the proposed M-detector is restricted to situations
for which the threshold TR of (24) 1is between 0 and 8. As noted above, the

trivial condition o < % is sufficient for r_ to be positive; however, the

R

condition that t, be less than 6 places a lower bound on 6, for fixed « and n,

R
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for which cp' is a maximin solution. If 6 is smaller than is necessary the
R
. alternate approach of local robustness (see, for example, Kassam and Thomas

[8]) can possibly be applied. However, the redescending nature of the

re

3 solution to n%n V(¥,P;p) for p > 0 may cause problems in the local formu-

F lation (see also Kassam, et al. [32]).

Before concluding, two comments concerning the overall optimality of

{:i the proposed robust detector are in order. First, since we have considered
:ﬁ only M-detectors, a question arises as to the performance of the proposed

: detector relative to other detectors that are not of this form. In answer
i to this question we note that it has been demonstrated in [18] (Theorem 1.1)
that, within regularity, the 9pt1mm M-estimate of § in (1) has variance

o O(pz) close to the theoretical minimum possible variance for asymptotically
- Gaussian unbiased estimates of 6. Thus, among threshold detectors based on
! estimates of 6, the class of M-detectors are capable of achieving overall

oy optimum performance to O(pz). As a second comment we note that higher order
- (in p) expressions for the asymptotic variance of ) ' (X) are available (see
CF [18, p. 39] and (19, Lemma 2.1]); thus the question of whether or not a

. corresponding higher order optimum influence curve is possible arises.

:; However, that no such M-estimate exists follows from Theorem 2.1 of [19]

’: which states that, for fixed p and within mild assumptions, no M-estimate

- depending only on p can achieve variance closer than O(pz) to the theoretical
f; minimum variance. This implies a similar statement for M-detectors.
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Appendix
A. A Proof of Theorem 3

Define z = mx[-k;l, d.n[Yl,k;l]}. We have
E(42(Y))) = E[y2(¥))] + ZE{(py(¥,) = 45 (0100 (¥p)]
+ E{fay (Tp) = 4o¥ 1%
= E(y2(2,)] + 2K E((Z - Y,)80(E))]
- B -1y} + KBz - 1,7 . (A1)

Note that |2 - Y,| S |Y,| so that the last two terms in the right-hand side
of (Al) are each bounded in magnitude by K: E{Yi]. Concerning the second
term in the right-hand side of (Al) we have (applying the Schwarz and
Chebychev inequalities)

|le{(z - Y1)'o("1)]'2 S E{@Z - Yl)zqg('tl)}rnz -v,| >0}
< E(Y?} swp ¢2P{|Y,] > K}
tﬂyen oE{|Y,] > k7]
<) sw vaoK .

YER
Thus, since kp and Ky are 0(p), we have

Etvial)] = E[qi(!l)] +06d . (A2)
Similarly, we have
Bl ()} = B Crp] + KR(lY,| > k1)

= E{og (¥} + KOG @3)
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y E
p | EQY 0 (TP} = E{Y 0 (Y] + KE{(Y, - 2)}
it > 2
E: . - E[YI'R(YI)] + O(P ) . (M)
K
7 Equations (A2) through (A4) imply (33). In each of (A2), (A3), and (A4)
: the higher order terms in p are uniform over ¥ if E{Yi] has a uniform bound.
Thus, in this case, the O(pz) in (33) is uniform 1{f (A3) is nonzero over ¥,
a condition which occurs 1f inf E{¢'(Y,)} > -KRB kz . The rest of Theorem 3
pes R 1! P
i follows. ’
"
B. A Proof of Theorem 4
#oe
& The sign of V(y,,P;-%) is the same as the sign of
o 0
£ 2 0= 4 Y Mo@IR(IEy) (81)
i Jewor-Ceye j_‘_woyp y).
i Writing p = Py + (p =Py)s Ve see that the quantity of (Bl) is equal to
: 2 o = (2 ([ 790 9IPg 1)y + [42(e - p.)
£ Jvore - frore .[_’*o Pp(7)4y) + [4o(P - Py
’ o [
. - (43 =2 ([ TPy N4y) - (uipe) § W @) - By (1))dy- (82)
- -
L
The first two terms of (B2) add to zero. If p and Pp differ only on Q the
fx
';,‘:'_; third and fourth terms of (B2) are both zero and the final term of (B2)
m becomes
X . .
- IeOKI[ |y|pg@dy = [ |ylp(ndy . (83)
& - -
) Theorem 4 follows from (B3).
E
3
X
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3.

Footnotes
Recall that the local power slope is the criterion for designing locally
most powerful detection systems (see Capon [6] or Ferguson [7]).
Note that the sample mean can be replaced by any other consistent estimate
of 6 in this analysis (see [18]1), in which case the condition ::r2 <o
might be relaxed in Theorem 1.
As 1n [1], by 0(p2) we mean 1im |0(p2)/p?| < .
It should be noted here that Vztg,pR;O). is the worst-case value of V(to'l’;o)
over p € &, but it is not necessarily true that V(*o'PR“’) is the worst-case
value of V(to,p;p) over § for p ¥ 0. In fact, this latter situation is

not usually the case, as follows from Lemma 1 and Theorem 4.
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Figure Caption

Fig. 1 - Influence curve for robust M-detection in dependent contaminated
AN Gaussisn noise with ¢ = 0.1 and p = 0.1,
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